QUIZ 15 SOLUTIONS: LESSON 19 OCTOBER 15, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

Let $f(x, y)=x e^{x^{2} y}$.

1. $[3 \mathrm{pts}]$ Find f_{x}.

Solution: f_{x} is the derivative of f with respect to x. We hold y constant and write

$$
\begin{aligned}
f_{x} & =\frac{\partial}{\partial x}\left(x e^{x^{2} y}\right) \\
& =\underbrace{x\left[\frac{\partial}{\partial x} e^{x^{2} y}\right]+\left[\frac{\partial}{\partial x}(x)\right] e^{x^{2} y}}_{\text {Product Rule }} \\
& =x \underbrace{\left[\frac{\partial}{\partial x}\left(x^{2} y\right)\right] e^{x^{2} y}}_{\text {Chain Rule }}+e^{x^{2} y} \\
& =x\left[y \frac{\partial}{\partial x}\left(x^{2}\right)\right] e^{x^{2} y}+e^{x^{2} y} \\
& =x[y(2 x)] e^{x^{2} y}+e^{x^{2} y} \\
& =2 x^{2} y e^{x^{2} y}+e^{x^{2} y} \\
& =\left(2 x^{2} y+1\right) e^{x^{2} y}
\end{aligned}
$$

2. [2 pts] Evaluate $f_{x}(160,0)$.

Solution: $f_{x}=\left(2 x^{2} y+1\right) e^{x^{2} y}$, we find $f_{x}(160,0)$:

$$
\begin{aligned}
f_{x}(160,0) & =\left(2(160)^{2}(0)+1\right) e^{(160)^{2} \cdot 0} \\
& =(0+1) e^{0} \\
& =1
\end{aligned}
$$

3. $[3 \mathrm{pts}]$ Find f_{y}.

Solution: f_{y} is the derivative of f with respect to y. We hold x constant and write

$$
\begin{aligned}
f_{y} & =\frac{\partial}{\partial y}\left(x e^{x^{2} y}\right) \\
& =x\left[\frac{\partial}{\partial y} e^{x^{2} y}\right] \\
& =x \underbrace{\left[\frac{\partial}{\partial y}\left(x^{2} y\right)\right] e^{x^{2} y}}_{\text {Chain Rule }} \\
& =x\left[x^{2} \frac{\partial}{\partial y}(y)\right] e^{x^{2} y} \\
& =x^{3} e^{x^{2} y}
\end{aligned}
$$

4. [2 pts] Evaluate $f_{y}(-1, \ln 2)$.

Solution: $f_{y}=x^{3} e^{x^{2} y}$, we find $f_{y}(-1, \ln 2)$:

$$
\begin{aligned}
f_{y}(-1, \ln 2) & =(-1)^{3} e^{(-1)^{2}(\ln 2)} \\
& =-e^{\ln 2} \\
& =-2
\end{aligned}
$$

